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We present a numerical study of layer formation in forced, rotating, stably stratified Boussi-
nesq flows. All flows are strongly stratified such that the buoyancy timescale 1/N is much
faster than the turbulence timescale. The Coriolis timescale 1/f is chosen to be comparable
to the turbulence timescale or faster. Furthermore, all simulations are in an asymptotic pa-
rameter regime defined by quadratic potential enstrophy. The aspect-ratio of the domain is
δ = Hd/Ld where Hd (Ld) is the vertical height (horizontal length) of the domain, and the
Froude (Rossby) number are defined using vertical (horizontal) scale and a velocity scale, both
based on the large-scale force. Two sets of simulations are studied, both with fixed Froude
number Fr = Fro ≈ 0.002. The first set of runs fixes δ = 1 and varies the Rossby number
Fro ≤ Ro ≤ 32Fro. These unit aspect-ratio runs show a transition from flow with a quasi-
geostrophic component to a layered flow as the Rossby number is increased from Ro = Fro.
The layering appears first in the wave component of the flow, but is gradually dominated by
the vortical component for large-enough Rossby number. Partly motivated by mid-latitude
geophysical flows, the second set of runs fixes the Burger number Bu = Ro/Fro = Nδ/f = 1
and varies the domain aspect-ratio 1/16 ≤ δ ≤ 1 (correspondingly 16 ≥ N/f ≥ 1).Wave-
mode layering is also present in the runs with Bu = 1 and δ < 1, with vortical mode layering
appearing only as δ < 1/4. Comparing the two sets of simulations for fixed N/f > 1, energy
is suppressed in the vortical mode component for the δ = f/N as compared to δ = 1. In
general, as N/f increases from unity, there is a steady increase in the relative energy in the
vortical modes at sub-forcing scales, but the rate of increase is slower if the aspect-ratio is
decreased simultaneously so as to keep Bu = 1. The characteristic scales of the wave and
vortical modes are measured using correlation lengths in the vertical and horizontal. As N/f
increases, the vortical mode thickness decreases as f/N while the wave mode thickness in-

creases as ≃ (N/f)1/2. The latter contribution may well provide a correction to the f/N
behavior observed for scale measurements in prior studies. The study is a first attempt to
systematically characterize how both external aspect-ratio δ and N/f determine the internal
scales and aspect-ratios of the structures formed in such flows.

Keywords: Boussinesq; Rotating turbulence; Stratified turbulence; small aspect-ratio flows

1. Introduction

We consider strongly stratified flows, aiming to study the effects of varying ro-
tation rate and domain aspect-ratio on the internal scales and aspect-ratios of
the emerging layered structures. The stratification is quantified by a large-scale
Froude number Fr, which is the ratio of a non-linear inverse timescale to the strat-
ification frequency N . Similarly, the Rossby number measures the strength of the
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Coriolis parameter f , which is twice the frame rotation rate, relative to the turbu-
lence timescale. Our goal is to remain in a well-defined region of parameter space
where intermediate sub-forcing scales are strongly influenced by buoyancy while
the Rossby number Ro and domain aspect-ratio δ are varied. Therefore in these
studies, Fr ≪ 1 is (nearly) fixed across all flows. In addition to the non-dimensional
parameters Fr,Ro and δ, the Burger number Bu = Ro/Fr (alternatively defined
as (Ro/Fr)2 [1]) is thought to be an important indicator of flow structure. Broadly
speaking, the internal (horizontal) deformation radius L at which Bu = 1, specifies
the scale at which rotation effects balance those of stratification for a given vertical
scale H [2]. Bu > 1 is thus characteristic of stratification-dominated flows. All the
parameter definitions described thus far are scale-dependent and vary for a given
flow depending on the scales chosen. For consistency and in order to maintain a
tractible parameter space, all the above non-dimensional parameters in our study
are based on the imposed large (forcing) scales, associated velocity, and the domain
aspect-ratio. We justify this choice a posteriori by relating the global parameters
to the internal (emergent) parameters.
Structure formation in strongly stratified and rotating flows has received much

attention during the last several decades, for example, see [3–20]. These stud-
ies span the gamut from purely stratified flow to purely rotating flow, with and
without significant small-scale turbulence, and with both unit and small domain
aspect-ratio. It is known that stratification and nonlinear forcing (turbulence from
various sources such as body-force, boundaries, baroclinic instability etc.) can play
competing roles in that the former tends to force the flow into stable layers, while
the presence of the latter might disrupt (overturn) such layers. Similarly, rota-
tion forms a competing mechanism to stratification, tending to force the flow into
columnar structures. Our particular focus is on the variability of layered structure
in strongly stratified flows, due to changes in rotation and aspect-ratio. In order
to isolate as much as possible these effects of interest, we chose to study flow in
which the turbulence timescales are much slower than either the stratification or
rotation frequencies so that the only competition to the stratification in the struc-
ture formation is rotation in variable domain aspect-ratios. Such a study might
have relevance even to flow with weak to moderate turbulence. Recently, [21, 22]
investigated layer formation in experimental studies of rotating and stratified, de-
caying grid turbulence. In [22], the integral length-scale in the vertical direction
(one measure of the layer thickness) was observed to increase monotonically with
f/N even while the turbulence decayed. This work suggests that some quantitative
features of the layering may be independent of the strength of turbulence (relative
to stratification or rotation) in the flow. In this spirit, we explore strongly strati-
fied flows for variability in structure formation with respect to rotation and domain
aspect-ratio, while suppressing the effects of turbulence.
In our work with Fr ≪ 1, we explore a region of parameter space in which the

potential vorticity is dominated by a linear term, with intent to ultimately make
connection with theoretical results. The conservation of linear potential vorticity
has been a cornerstone of theory and modeling beginning with the work of Ertel
[23]. Charney [24] deduced the direction of energy and potential enstrophy fluxes
and the energy scaling laws for quasi-geostrophic (QG) flows. The quasi-geostrophic
model equations are precisely the mathematical statement of conservation of a lin-
ear potential vorticity, and can be rigorously derived using fast-wave averaging in
the limit Ro ∼ Fr → 0 [25]. Linear potential vorticity is also associated with the
limit Fr → 0, Ro = O(1) which permits the so-called vertically sheared horizontal
flows (VSHF) [9, 19, 25–27]. For Bu = 1, small aspect-ratio flows, [28] showed ana-
lytically that three-wave near-resonant interactions become sparse, thus inhibiting
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the formation of VSHF that were observed to develop in the unit aspect-ratio
simulations of [9, 19, 26, 27, 29]. In [30, 31], the utility of quadratic potential en-
strophy (one-half the square of linear potential vorticity) was explored for deriving
exact statistical flux laws and for constraining energy. In related work [32] stud-
ied the joint downscale fluxes of both potential enstrophy and energy in strongly
rotating and stratified flows, highlighting the difference between such flows and
two-dimensional turbulence. And in [33] we concluded that the flows with unity
Burger number for even asymptotically small Ro and Fr are perhaps non-universal
and depend on aspect-ratio. In the present work we use numerical simulations to
complement these prior theoretical and computational results and to systematically
explore the effects of domain aspect-ratio and rotation on structure formation and
layering in strongly stratified flows. A novel feature of our study is the dissec-
tion of the layering phenomena by separating the trends in the wave and vortical
components of kinetic energy, and attempting to correlate these to the structure
formation. The linear potential vorticity limit might also be of use in studies of
strongly rotating flows and the data analysis we present here may be helpful in
those regimes as well.
Stratified flows in general have relevance to geophysical phenomena, though here

we do not attempt to make direct connection with any particular geophysical appli-
cation. To avoid confusion, we point out that our simulations should not be used to
interpret the empirically measured Nastrom-Gage spectrum [34] of the mid-latitude
atmospheric mesoscales. Spectral scalings studies to recover the Nastrom-Gage
spectrum have included both numerical and phenomenological work [17, 20, 35],
with consensus that the potential enstrophy in those regimes, while not directly
measured, is quite likely not quadratic.
Section 2 follows with a discussion of the equations of motion and conservation

laws. In section 3, we give the details of the simulations followed by discussion of
the three levels of comparison of the data: 1) varying Ro for fixed Fr in unit aspect-
ratio 2) varying aspect-ratio for fixed Fr and Bu = 1 and 3) decreasing aspect-ratio
from unity to f/N for various fixed N/f . Section 4 presents calculations of integral
length scales of both wave and vortical components and the internal aspect-ratios.
We conclude with a summary of the work and some conjectures about how the
global parameters Fr,Ro, δ and Bu together influence the physical- and spectral-
space characteristics of internal scales and flow structure.

2. Equations of motion and the regime of linear potential vorticity

We consider the forced Boussinesq equations in a reference frame rotating about
the vertical ẑ-direction [36–38], given by

D

Dt
u+ f ẑ × u+

1

ρ0
∇p+

ρ

ρ0
gẑ = ν∇2u+ fu

D

Dt
ρ− b(u · ẑ) = κ∇2ρ+ fρ, ∇ · u = 0, (1)

where the Coriolis parameter f = 2Ω and Ω is the frame rotation rate. As usual,
D/Dt = ∂/∂t+u ·∇ is the derivative following fluid particles, and the dynamical
variables are the fluctuating part of the density ρ(x, t), the three-dimensional fluid
velocity u(x, t) with components (u, v, w) and the effective pressure p(x, t). The
background stratification is linear and aligned with the rotation axis such that the
total density is ρT (x, t) = ρ0 − bz + ρ(x, t). The dimensional coefficients ρ0 and b
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are positive constants, with b positive for stable stratification. Assumptions under-
lying the Boussinesq approximation are |ρ| ≪ ρ0 and |ρ| ≪ |bz| with background
in hydrostatic balance ρ0g = ∂p0/∂z. For some geophysical flows, it is more ap-
propriate to expand around a background potential temperature instead of density
[39]; modulo sign/coefficient changes, the basic structure of the equations remains
the same. An inverse time scale characterizing the strength of the stratification is
the buoyancy frequency N = (gb/ρ0)

1/2 where g is the acceleration of gravity. The
kinematic viscosity ν and the thermal diffusivity κ are associated with molecular
processes.
All simulations will be done in a periodic domain, with constant f and N . Our

investigation addresses the forward transfer of energy in (1) under the influence
of a large-scale, random force fu,fρ. The domain will have unit aspect-ratio or
small aspect-ratio, with vertical domain height Hd and horizontal domain length
Ld such that Hd/Ld = δ ≤ 1. The external force fu,fρ is localized in wavenumber,
with peak forcing wavelength Hf = Hd/4 held fixed at one-quarter of the domain
height.
In a rectilinear domain with dimensions (Ld, Ld, Hd), an appropriate non-

dimensionalization of (1) scales vertical distances z by H = 2π/kf where kf is
the peak wavenumber of the forcing, and horizontal distances x and y by L = H/δ,
For a forcing fu which projects equally onto horizontal and vertical components of
velocity, all velocity components are scaled by the same characteristic large-scale
velocity U = (ε/kf )

1/3, where the force has energy input rate ε. Pressure is scaled
by ρ0U

2 and density fluctuations by Bρ0 with B (non-dimensional) constant. With
time scaled by L/U , the non-dimensional form of (1) is given by

Dδ

Dt
u+Ro−1ẑ × u+∇δp+ γρẑ = Re−1

∇δ ·∇δu,

Dδ

Dt
ρ− γ−1(Fr δ)−2ρw = (Pr Re)−1

∇δ ·∇δρ, ∇δ · u = 0 (2)

where Dδ/Dt = ∂t + u · ∇δ, ∇δ = ∇h + ẑ δ−1∂z, ∇h = x̂ ∂x + ŷ ∂y and ∂i
is the partial derivative with respect to the position vector component x, y or
z indexed by i = 1, 2 and 3 respectively. The Rossby and Froude numbers are
here defined, respectively, by Ro = U/(fL) and Fr = U/(NH). Additional non-
dimensional parameters are the aspect-ratio δ = H/L = Hd/Ld and γ = BgL/U2,
with constraint γ = (δ Fr)−1 for conservation of energy. The latter constraint
selects the appropriate non-dimensional coefficient B in terms of the characteristic
(imposed) velocity U by the consistency relation B = U(gρ0/b)

−1/2. The Reynolds
Re and Prandtl Pr numbers defined for normal viscosity Re = UL/ν, Pr = ν/κ
could be replaced by analogous expressions involving hyper-coefficients, but these
would not have any physical interpretation so we do not introduce them here.
For an unbounded or periodic domain, the linear eigenmodes of (2) are Fourier

modes [u(x, t;k), ρ(x, t;k)]T = φm(k) exp[i(k · x− σm(k)t)] with four-component
orthogonal basis vectors φm(k) (see, e.g., [9, 25] for explicit expressions for φm(k)).
There are three types of eigenmodes corresponding tom = 0,±1. Them = 0 modes
are usually called vortical modes φ0(k) and have zero frequency σ0(k) = 0. The
m = ±1 modes are two wave modes φ±(k) with frequency σ±(k) given by the
dispersion relation

σ±(k) = ±
(Fr−2k2h +Ro−2k2z)

1/2

(k2hδ
2 + k2z)

1/2
, (3)
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where kh = (k2x+k2y)
1/2 is the horizontal wavenumber. The slowest wave modes with

kh = 0 and frequency σ± = ±Ro−1 correspond to VSHF, with zero vertical velocity
and zero vertical vorticity. The linear eigenmodes serve as a useful orthogonal and
complete basis to represent the solution to the full nonlinear equations:

[u(x, t), ρ(x, t)]T =
∑

k

∑

m=0,±

bm(k, t)φm(k) exp[i(k · x− σm(k)t)] (4)

where the amplitudes bm(k, t) are now the unknowns to be determined [9, 33].
The vortical and wave-mode decomposition is a natural way to expose the dy-

namical hierarchy in terms of resonant, near-resonant and non-resonant interac-
tions that results from the dispersive modulation of the advective nonlinearity (see
[9, 37, 40, 41] for details of the wave-vortical decomposition). Indeed, much of our
understanding of rotating and stratified turbulence is based on the wave-vortical
mode decomposition. Exact resonances are interactions that satisfy the triad con-
dition k + p + q = 0 and the resonance condition σ(k) + σ(p) + σ(q) = 0, and
they appear at next-to-lowest order in a formal perturbation expansion of the
Fourier-transformed equations (2) about the Rossby and/or Froude number(s). As
the name suggests, near-resonant interactions appearing at higher order satisfy the
resonance condition only up to an error of O(Fr) or O(Ro). As the Rossby and/or
Froude numbers approach zero, some or all of the exact resonances dominate the
dynamics. For Ro ∼ Fr = ǫ → 0, exact resonances between vortical modes dom-
inate, with σ0(k) + σ0(p) + σ0(q) = 0. The well-known quasi-geostrophic (QG)
approximation is associated with interactions among vortical modes [9, 25, 28, 40],
and different derivations of the quasi-geostrophic equations include the original
scaling analysis [5, 24], a mathematically rigorous averaging procedure [25], anal-
ysis of small divisors [1, 28], and a formal non-perturbative reduction [9, 42]. The
limit Fr → 0 with Ro = O(1) or infinity has also been analyzed from different
points of view [1, 3, 5, 25]. Of note are at least two important differences com-
pared to Fr ∼ Ro → 0: (i) three-wave exact resonances are non-negligible, with
σ±(k) + σ±(p) + σ±(q) = 0, (ii) the VSHF persist in time as shown rigorously
by [25]. Although it is known that exact resonances cannot transfer energy to
VSHF modes, the studies [9, 19] for finite, small Fr indicate that near-resonant,
three-wave interactions are primarily responsible for the generation of VSHF. Some
theoretical analyses account explicitly for small-aspect-ratio domains [1, 5]. In par-
ticular, [1] showed that near-resonant, three-wave interactions are sparse for small-
aspect-ratio, Fr → 0, Bu = O(1) flows.
Foundational laws for rotating, stratified fluids in the inviscid, non-diffusive limit

are (i) conservation of energy, and (ii) conservation of potential vorticity following
fluid particles [23]. Global energy conservation is given by

∂tE = ∂t

∫

D
E(x) dx = ∂t

∫

D

1

2
(u · u+ ρ2) dx = 0 (5)

where
∫

D indicates integration over the domain. The potential vorticity q is defined

as q = (ω + Ro−1ẑ) · ∇δρT , and its derivative following fluid particles vanishes
according to
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Dδ

Dt
q =

Dδ

Dt

(

(Ro δ)−1∂zρ− (Fr δ)−1ω · ẑ + δ−1(∂zu ∂yρ− ∂zv ∂xρ+ (ω · ẑ)∂zρ)

+ (∂yw ∂xρ− ∂xw ∂yρ)

)

= 0, (6)

where ω is the relative vorticity ω = ∇δ × u. The constant piece of q (that is,
Ro−1Fr−1δ−1) has been dropped since it does not contribute to the conservation
law (6). While energy conservation (5) does not depend on any of the salient non-
dimensional parameters, the conservation of potential vorticity (6) does. Therefore
it is useful to use potential vorticity to define our parameter space and to differen-
tiate this work from related work.
The linear piece of (6), qlin = (Ro δ)−1∂zρ−(Fr δ)−1ω ·ẑ, is the pseudo-potential

vorticity conserved by the QG equations. One series of flows simulations has δ = 1
with fixed small Fr, and Ro varying from Ro = Fr to Ro ≃ O(10−1). This series of
runs has linear potential vorticity ≃ (Roδ)−1ω · ẑ+ (Frδ)−1∂zρ, (both Ro and Fr
dependencies are significant) or ≃ (Frδ)−1∂zρ (for the case where Ro ≃ O(10−1),
with all other terms being subdominant. The second series of flow simulations has
decreasing δ and Ro = Fr (fixed small). In this case, the potential vorticity is
again linear and dominated by the sum (Roδ)−1ω · ẑ + (Frδ)−1∂zρ.
Our chosen parameter regimes might be contrasted with studies of purely strat-

ified small aspect-ratio flows [17, 35, 43] (Ro → ∞) and with vertical Fr rela-
tively large. Indeed [35] first indicated that the Nastrom-Gage spectrum parameter
regimes might be associated with non-linear potential vorticity. The numerical sim-
ulations of stratified flows by [17] directly address the parameter regime thought
to be of interest for the Nastrom-Gage spectrum [34]. In that study, it was shown
that the scales need to be resolved well past the buoyancy scale Lb = 2πU/N
down to the Ozmidov scale LO (the outer scale of turbulence), in order to obtain
converged spectra with the dual scaling regime thought to be typical of the at-
mospheric mesoscales. By contrast, our aim in this study is to both include the
effects of rotation and aspect-ratio, and to minimize nonlinear potential vorticity
contributions to understand some of the leading-order qualitative and quantitative
aspects of structure formation in a fairly well-controlled parameter sub-space. This
choice necessarily leads to a set of simulations for which Lb is marginally resolved
at best (see Table 1). Thus, in our simulations there is no overturning due to wave
dynamics. We also do not resolve scales larger than the forcing scale, and the focus
of our study is a range of scales smaller than the forcing scale, but larger than Lb.
The buoyancy Reynolds number RB ≃ Re(Fr/δ)2, where Re = UL/ν is the

Reynolds number based on a characteristic horizontal scale, is useful to characterize
the competing influences of turbulence and stratification. The importance of RB

in the transition from viscous dominated to stratification domination flows was
first discussed in [14]. Following those arguments, [20] explored the relationship
between the RB and the quadratic potential entrophy (one-half the square of the
potential vorticity) in the context of atmospheric flows. It was shown that for flows
with RB > 1, the potential enstrophy is quartic while for flows with RB < 1, the
potential enstrophy is quadratic. Since atmospheric flows are estimated to have
RB ≫ 1, the author concludes that quartic potential enstrophy is quite likely to
characterize such flows thus rendering the quadratic potential enstrophy condition
less critical to atmospheric flows.
Although the standard Reynolds number is not well-defined in our flows due to

the use of hyperviscosity, our extremely small Fr likely places our flows in the
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regime of ReB < 1, consistent with quadratic potential enstrophy according to
[20]. Given the theoretical inclination of our studies we propose quadratic poten-
tial enstrophy as a well-defined limit for detailed parameter studies tied closely
with rigorous theory. Laboratory experiments also tend to be in the ReB ≪ 1
regime due to the difficulty of achieving extremely high Reynolds numbers [21, 22].
Furthermore, a better understanding of such asymptotic regimes might yield useful
benchmarks and test-beds for model validation.
Since the potential vorticity q is a sign indefinite quantity, we use the potential

enstrophy as a surrogate to monitor development of q [33]. The total potential
enstrophy is defined as

Q =
1

2

∫

D
q2dx, (7)

and its quadratic part

Qquad ≡
1

2

∫

D
δ−2(Ro−1∂zρ− Fr−1ω · ẑ)2 dx. (8)

will dominate when q ∼ qlin. The scan of the parameter space in what follows will
be accomplished by tracking the potential enstrophy.

3. Numerical Simulations

Pseudo-spectral calculations of the Boussinesq equations with rotation are per-
formed on domains with aspect-ratio δ = Hd/Ld ≤ 1, dimensions Ld × Ld ×Hd =
1 × 1 × δ and Nx × Ny × Nz gridpoints. Requiring isotropic grids, we have
Nx = Ny = Nz/δ. Fourth-order Runge-Kutta time-stepping is used, the inertia-
gravity wave frequencies are adequately resolved. An eighth-order hyperviscos-
ity/diffusion (∇2)8 is used in place of ∇2 in both the momentum and density
equations following what has become standard practice to extend the inertial range
of scales. Therefore the viscous/diffusion constants ν and κ used in practice are
not physical. As discussed in the Introduction, our work focusses on the range of
scales characterized by linear potential vorticity; those scales are larger than the
buoyancy scale and well-removed from the dissipation scale. Hence for the scales of
interest here, we expect the effects of hyperviscosity/diffusion to be sub-dominant.
The rate of energy input in all cases is fixed at ǫf ≈ 1. The forcing is chosen to

peak at the fourth wavenumber shell kf = 4×∆k, namely at scales one-quarter of
the height of the domain. Both wave and vortical modes are equally forced at each
forced wavenumber. Identical forcing schemes were used in [31, 33] where further
details are available.
The fourier modes are dealiased using the 2/3-rule giving an effective small-scale

grid of ∆x × ∆y × ∆z = 1.5/Nx × 1.5/Ny × 1.5 δ/Nz. The wavenumber in the

horizontal kh = (k2x + k2y)
1/2 has increments ∆kh = 2π/Ld = 2π while the vertical

wavenumber has increments ∆kz = 2π/Hd = 2π/δ. The spherical increment (shell
thickness) is defined using the vertical wavenumber increments ∆k = ∆kz.
Based on the characteristic forcing velocity scale U = (ǫf/kf )

1/3, vertical scale
H = 2π/kf and horizontal scale L = H/δ, the Fr = U/(NH), and Ro = U/(fL).
The values of N are chosen to (approximately) fix Fr ≃ 0.002 in all cases. At this
value of Fr, we know that all the flows are in the regime of quadratic potential
enstrophy (see Figure 1). The buoyancy scale Lb = 2πU/N is under-resolved with
∆x/Lb ranging from 4 to 23 (see Table 1). The smallest aspect-ratio flow is the least
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resolved with respect to Lb due to our decision to fix Fr so as to be able to compare
across a wide range of flows. In order to fix Fr at fixed resolution, as δ decreases
and the forcing wavelength remains fixed at one-quarter the domain height, the
value of N required is unavoidably high, hence the very small Lb. We proceed to
study layer formation in the scales larger than Lb across a wide parameter range.

run grid δ = Hd/Ld Ro Fr Bu N/f ∆x/Lb

B1 640× 640× 640 1 0.0023 0.0023 1 1 4.08
B4 640× 640× 640 1 0.0091 0.0023 4 4 4.07
B8 512× 512× 512 1 0.016 0.002 8 8 5.85
B16 512× 512× 512 1 0.032 0.002 16 16 5.85
B32 512× 512× 512 1 0.064 0.002 32 32 5.85
d4 2048× 2048× 512 0.25 0.002 0.002 1 4 5.85
d8 2048× 2048× 256 0.125 0.002 0.002 1 8 11.7
d16 2048× 2048× 128 0.0625 0.002 0.002 1 16 23.43

Table 1. Parameters of the numerical simulations of the Boussinesq equations.

The first set of flows is denoted by prefix ‘B’, since Bu is varied at fixed unit
aspect-ratio (Table 1). We fix Fr = Fro ≃ 0.002, δ = 1 and vary Ro such that
Bu = Ro/Fr = 1, 4, 8, 16 and 32. This provides for a study of layer formation
strictly as a function of Ro for fixed Fr. The second set of flows is denoted by
prefix ‘d’, since the aspect-ratio δ is varied at fixed Bu = 1. Again fixing Fr =
Fro = 0.002 and Bu = δN/f = 1, we choose N/f = 4, 8 and 16 to match (some
of) the N/f values in the B-series; consequently setting δ = 1/4, 1/8 and 1/16 in
d4, d8 and d16 respectively. We perform three comparative studies: B-series (effect
of Ro for fixed Fro ≃ 0.002), d-series (effect of aspect-ratio for fixed Bu = 1 and
fixed Fro ≃ 0.002) and between the B- and d-series (effect of changing δ from 1
to f/N for fixed N/f). There are, of course, numerous other parameter variations
that could have been explored. We are providing a partial exploration into the
myriad combinations of Ro, Fr, Bu, N/f and δ that are possible in such flows,
with a specific focus on the variability of structure (layer) formation.
The nonlinear timescale based on the forcing scale τ = (ǫfk

2
f )

−1/3 is used to non-

dimensionalize time t such that τnl = t/τ . Figure 1 shows the evolution of potential
enstrophy and of its quadratic component for both sets of flows as a function of τnl.
By this measure it is clear that all flows are in the quadratic potential enstrophy
regime which provides a reasonably well-defined limiting regime in the parameter
space wherein (potentially uncontrolled) nonlinear potential vorticity effects are not
a factor. Note that Fig. 1(a) shows potential enstrophy of the Bu > 1 flows growing
in time, indicating that at least a part of the potential enstrophy is transferred
upscale of the forcing where there is no dissipative mechanism. In Fig. 1(b), all the
flows have Ro = Fr and the potential enstrophy saturates rather quickly in time
suggesting that all the potential enstrophy transfers downscale and is dissipated in
the small scales.

3.1. B-series comparison: fixing δ = 1, Fr ≃ 0.002, varying Ro

We begin with a comparison of unit aspect-ratio flows B1-B32, which have (nearly)
fixed Fr = Fro, identical forcing, and comparable resolution of the buoyancy scale
4 < δx/Lb < 5.8 (that is, nearly constant N). The Coriolis parameter f is varied
so that N/f increases from 1 to 32. Effectively, Ro is increased from 0.002 to 0.064
in this series. The structure of the flow is visualized using the wave and vortical
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(b) d-series: Bu = 1 flows for fixed Fr ≃ 0.002,
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Figure 1. Global potential enstrophy Q (solid line) and its quadratic component Qquad (dashed-line) for
all the flows in the database, as a function of non-dimensional time. The two lines practically coincide
in all cases, indicating that flows are in the asymptotically quadratic potential enstrophy regime by this
measure.

(a) Surface contours of the wave component of u
for B4.

(b) Surface contours of the wave component of u
for B4 with only k > 5 modes retained.

Figure 2. Two visualizations of B4 using the wave-component of u.

components of u, the x-component of the velocity u. From Eq. (4) we have

u±(x, t) =
∑

k

∑

m=±

bm(k)φm
1 (k) exp[i(k · x− σm(k)t)] (9)

u0(x, t) =
∑

k

b0(k)φ
0
1(k) exp[i(k · x− σm(k)t)] (10)

Similar projections may be defined for v, w and ρ. density. Figure 2(a) shows sur-
face contours of u± at the latest time for flow B4 with evident layered structure.
The signature of the forcing is apparent in the unfiltered flow in the form of larger
coherent structures. In Fig. 2(b) we show the same flow field with modes k < 5
filtered out. It is clear from the filtered version that the layering persists to much
smaller scales than the characteristic large and forced scales. The vortical compo-
nent of the velocity visualized in this way (not shown) also shows the signature
of the forcing. In order to avoid biasing the eye to the forcing signature, in the
development of structure in the sub-forcing scales, in subsequent visualization we
show fields for which the low modes (k < 5) have been filtered out. However our
spectra and scale calculations presented later in the paper retain all modes.



April 9, 2014 14:58 Journal of Turbulence Boussinesq˙Burger˙revised

10

3.2. Equal time data-analysis

Figure 3. Visualization of a (y-z) slice of the u field at τnl ≃ 50 for the δ = 1 (B-series) simulations
for the wave (left column) and vortical (right column) component of u. From top (for Fro ≃ 0.002):
(Ro = 0.0091, N/f = 4) (B4), (Ro = 0.016, N/f = 8) (B8), (Ro = 0.032, N/f = 16) (B16), (Ro =
0.064, N/f = 32) (B32). The wavenumbers k ≤ 5 have been filtered out in all cases in order to focus on
sub-forcing scales.

Since our flows are run out to different non-linear times (see Fig. 1) we first
compare B4-B32 at equal time τnl ≈ 50 (the latest time for B32). Layered struc-
ture has emerged in the wave modes in all four cases (left column Fig. 3). The
vortical component shows very weak structures for B4, becoming more distinct for
higher values of Ro (B8, B16, B32, right column Fig. 3). From these early time
visualizations we may conclude qualitatively, that: a) layering is set up at early
times in all cases, b) for relatively small N/f (Ro ≃ 4Fro) the layers observed in
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the vortical component of the flow are not very distinct, and the magnitude of the
vortical and wave components are comparable, c) for larger N/f (Ro ≥ 8Fro) the
layered structure become more distinct in the vortical mode and the magnitude
of the vortical component becomes much larger than the wave component, and d)
fine scale layered structure in the vertical increases in the wave component as Ro
increases, but the magnitude of the wave component is becomes subdominant to
the vortical.
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(a) B4: Ro = 0.0091;N/f = 4.
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(b) B8: Ro = 0.016;N/f = 8.
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(c) B16: Ro = 0.032;N/f = 16.
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(d) B32: Ro = 0.064;N/f = 32.

Figure 4. Wave, vortical and kh = 0 (wave) mode spectra for B-series δ = 1, F r ≃ 0.002 flows with
(Ro,N/f) as indicated, at τnl = 50 nonlinear times. The VSHF (excluding the forcing scales) are not
significant at these early times.

The wave and vortical energy spectra as a function of wavenumber k for a given
time t are defined as:

E±(k, t) =
1

2

∑

(∆k)S

∆k(|b+(k, t)|2 + |b−(k, t)|2)

E0(k, t) =
1

2

∑

(∆k)S

∆k|b0(k, t)|2 (11)

where
∑

(∆k)S

indicates summation over all wavenumbers k − 1
2∆k < |k| ≤ k + 1

2∆k

within the shell of thickness ∆k. The wave and vortical energy spectra as defined
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above are shown in Fig. 4 for equal time τnl = 50. For B4 the vortical energy scales
as k−3, nominally characteristic of quasi-geostrophic flow [24]; both the vortical-
mode energy and the VSHF energy are subdominant to the wave-mode energy for
wavenumbers k > kf . As Ro increases (B8) the vortical energy becomes compa-
rable to the wave energy with scaling shallower than k−3 in a wide intermediate
range of scales. As Ro increases even further (B16 and B32), the vortical contri-
bution dominates the total energy. In summary, the VSHF are unimportant at
these (early) times, and a transition from wave-mode dominance to vortical-mode
dominance with respect to energy distribution is observed as Ro increases. This is
consistent with the visualizations (Fig. 3) in which vortical mode shows increasing
fine structure in the vertical and wave-mode amplitudes decrease as Ro increases.

3.3. Late time data-analysis
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Bu = N/f = 4
Bu = N/f = 8
Bu = N/f = 16
Bu = N/f = 32

δ = 1, Fr = 0.002

k−2

Figure 5. Comparison of the total energy spectra for all flows in the B-series. The k−2 line is placed only
as a reference scaling.

We observe that the (latest time) total energy spectra of each of the flows in the
B-series (Fig. 5) are more or less comparable. A k−2 scaling line is shown as a guide
to the eye. Indeed a precise scaling exponent may not be an appropriate measure,
with noisy intermediate scales emerging near the forcing scales and then at smaller
wavenumbers, as Bu increases. However the overall decay trend seems close to k−2,
distinct both from k−1 expected for the wave component and from k−3 expected
for the vortical component in quasi-geostrophic flow. The similarity in shape and
magnitude of the total energy spectrum for all the B-series flows provides further
support to the notion that differences between them become clear only in a deeper
dissection such as the wave-vortical mode decomposition.
In Fig. 6 we compare visualizations of B1 through B16 (the latest-time of the

B32 flow was presented in the previous section) at the latest simulation time for
each flow. As expected, for Ro = Fr (B1) there is an absence of layering. For B4-
B16, the visualizations are consistent with early times – wave component layers
are strongly evident in all cases, while as Ro increases from (B4, N/f = 4) to
(B8, N/f = 8) the vortical component layers become more pronounced. We make
the qualitative observation that the layers in the vortical mode display more fine-
scale structure as Ro increases; the corresponding fine-scale structure of the wave-
component decreases, consistent with the wave and vortical energy spectral trade-
offs discussed below. Briefly, the visualization at the latest times show no real
qualitative difference in the trends as Ro increases when compared to earlier times.
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Figure 6. Visualization of a (y-z) slice of the flow field at the latest time of the B-series of (δ = 1, F r ≃

0.002, N ≃ 4000) simulations showing iso-contours of the wave (left) and vortical (right) component of
the horizontal velocity. From top: (Ro = 0.00227, N/f = 1) (B1), (Ro = 0.0091, N/f = 4) (B4), (Ro =
0.016, N/f = 8) (B8), and (Ro = 0.032, N/f = 16) (B16). The wavenumbers k ≤ 5 have been filtered out
in all cases in order to focus on sub-forcing scales.

In Fig. 7 we show the total energy, the wave energy, the vortical energy and the
contribution to the wave energy from the VSHF, at the latest simulation time,
for the B-series. Note that the latest time spectra for B32 is already given in Fig.
4. As is now well-known (see for example [40, 44]) the vortical energy goes from
being subdominant in B4 (N/f = 4), to being comparable to the wave enery in
B16 to being dominant in B32. For both B4 and B8, there is significant energy in
the VSHF at these late times (to be contrasted with the lack of VSHF early time
data). It is not possible to rule out the appearance of significant VSHF in the B16
and B32 flows if they were to be run to even longer times. Note that B4 was run
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(a) B4: Ro = 0.0091;N/f = 4.
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(b) B8: Ro = 0.016;N/f = 8.
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(c) B16: Ro = 0.032;N/f = 16.

Figure 7. Wave, vortical and kh = 0 (wave) mode spectra for B-series (δ = 1, F r ≃ 0.002) flows at
their respective latest times. The VSHF (excluding the forcing scales) are significant only for Ro = 0.0091
(N/f = 4) and Ro = 0.016 (N/f = 8).

to τ = 90 while B8 and B16 was run to τnl = 120; and the first has the most
pronounced VSHF. We may infer that for fixed small Fr, increasing Ro delays
and, possibly, inhibits the appearance of VSHF in the small scales. It may also
well be that the VSHF would appear in the large scales (low wavenumbers) after
long times, if we had a substantial range of large scales resolved, similar to the
simulations of [9]. This particular issue cannot be resolved without much longer
runs for all cases which is not within our present capabilities.
Another representation of the layer formation may be seen in the increasing

asymmetry of the wave and vortical energy spectra as a function of horizontal (kh)
and vertical (kz) wavenumber components. These are defined as:

E±[0](kh, t) =
∑

kz

∆kz
∑

(∆kh)S

∆khE
±[0](κh, kz)

E±[0](kz, t) =
∑

kh

∆kh
∑

(∆kz)S

∆kzE
±[0](kh, κz) (12)

where
∑

(∆kh)S

indicates summation over all wavenumbers in the annulus
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Figure 8. For the B-series (δ = 1, F r ≃ 0.002) flows, left column: wave energy as a function of kh
(summed over kz), as a function of kz (summed over kh), and as a function of kz for fixed kh = 0
(VSHF); right column: vortical energy as a function of kh and kz . Top to bottom: (Ro = 0.0091, N/f = 4),
(Ro = 0.016, N/f = 8), (Ro = 0.032, N/f = 16), (Ro = 0.064, N/f = 32).

kh −
1
2∆kh < kh ≤ kh +

1
2∆kh and

∑

(∆kz)S

indicates summation over the wavenum-
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bers on the line fraction kz −
1
2∆kz < kz ≤ kz +

1
2∆kz In Fig. 8 we show that as

Ro increases there is a marked difference in the rate of decay of E±[0] along kh
as compared to the decay along kz. An increased accumulation in large kz with
rapid decay at large kh is a characteristic signature for layers, indicating fine scale
structure in the vertical. This is consistent with the observed layered structure,
particularly for the vortical modes. The right column of Fig. 8 shows that, as Ro
increases, the decay rate for E0(kh) increases while E0(kz) becomes increasingly
flat. The wave energy spectra shows qualitatively similar behavior as Ro increases
(left column of Fig. 12) but the asymmetry in the spectra for kz vs kh is not as
strong, consistent with less fine structure of the wave-component in the vertical and
perhaps less distortion (relative flattening) of the associated structures (consistent
with the visualizations).
Our visualizations and results for energy spectra are consistent with previous

work. For example, growth of the VSHF has been observed for stratification dom-
inated flows by [9, 13, 19, 26]. For purely stratified flows and decreasing Fr
[14, 26, 44] observed steepening of spectra with respect to horizontal wavenum-
ber kh and flattening spectra with respect to the vertical wavenumber kz. In those
simulation (without rotation and with different forcing) and in our spectra reported
above such asymmetry is consistent with layering. Overturning is not resolved both
in the simulations with RB < 1 of [14, 26, 44] as well as in our B-series. In the
following sections, we begin to systematically explore the impact of small aspect-
ratio on both wave-mode and vortical-mode layer formation. We further attempt
to quantify internal layer thicknesses in Section 4.

3.4. d-series comparison: fixing Ro = Fr = 0.002, varying δ

The second series of flows we investigate was motivated by the question of how
domain aspect-ratio could influence layer formation. The d-series includes d4, d8
and d16 (δ = 1/4, 1/8 and 1/16 respectively) in our database, all of which have
Fr ≃ 0.002. In order to study the effect of varying δ while keeping as much of the
rest of the parameter space fixed as possible, we chose to fix Ro = Fr = 0.002 such
that the Burger number Bu = Ro/Fr = δN/f = 1 in all cases. Burger number
unity flows are thought to be representative of mid-latitude ocean dynamics [45],
hence the theoretical interest in such flows [1, 28]. In this section we focus on
varying δ for fixed Ro = Fr. Choosing to fix Bu = 1 to study the effect of varying
δ naturally affects N/f such that N/f = 1/δ 6= 1 for these flows. All flows are
in the quadratic potential enstrophy regime as shown in Fig. 1(b). Note that the
potential enstrophy for the d-series saturates in time indicating that dissipation
balances the downscale flux and that any upscale growth of potential enstrophy is
absent.
Since early (equal) time comparisons of the three flows in this series are consistent

with the late time descriptions below, we do not present the former. Fig. 9 shows
the flow visualizations at the latest simulations times. In order that the structure
thicknesses are clearly visible relative to the height of the domain, we show unit-
aspect-ratio slices of the flows. For example, to visualize d16, which was computed
on a 2048 × 2048 × 128 grid, we show a 128 × 128 sub-section of a full 2048 ×
128 y-z slice. In such a visualization the vertical scale thickness relative to the
vertical domain height is made clear, but the extent of the horizontal scales are
not. However, the latter are quantified later in the paper when we discuss the
aspect-ratios of the internal scales; for now the reader should keep in mind the
unavoidable bias in this choice of visual representation.
As in the B-series of runs, wave-mode layering is present in all three cases of the
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d-series (Fig. 9 and the vertical thickness of the wave-modes appears to increase
(relative to domain height) as N/f increases (δ decreases). At these latest times of
the flows it appears to the eye that, relative to the vertical height of their respective
domains, the vertical layer thickness does not change significantly from d4 to d16.
If the latter simulations were run out to even longer times, it is possible that
layers would develop. However, given the rather early time appearance of vortical
layers in d16, it seems less likely that d8 and/or d4 would develop layers at much
later times. It is difficult to make the assertion, from just these visualizations, that
there is a strengthening of the vortical layers going from d8 to d16. In particular,
the maximum amplitude of the velocity associated with the vortical modes in the
visualizations appears to be decreasing as δ decreases, making it even harder to
claim that the vortical mode layering is significant. Further quantification of the
vertical and horizontal scales in the d-series occurs in Section 4. Note again that
the visualizations themselves do not give an indication of the horizontal extent of
the layers.

Figure 9. Visualization of a (y-z) slice of the flow field at the latest time of the Bu = 1 small aspect-ratio
simulations (d-series) showing iso-contours of the wave (left) and vortical (right) projection of u. From
top: δ = 1/4, N/f = 4 (d4); δ = 1/8, N/f = 8 (d8); and δ = 1/16, N/f = 16 (d16). The wavenumbers
k ≤ 5 have been filtered out in all cases in order to focus on sub-forcing scales.

The total energy spectra for d4, d8 and d16 are shown in Fig. 10 with a k−2

line shown for comparison. There is a slight change in scaling at high wavenumbers
for d4 but apart from that the overall energy scaling does not seem to change
substantially going from δ = 1/4 to δ = 1/16 for fixed Fr = 0.002. The magnitudes
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Figure 10. Comparison of the total energy spectra for all Bu = 1 flows showing that the decay rate in k
has saturated.

of the spectra are different consistent with the shift in the peak of the forcing. The
breakdown of the energy into the relevant components is shown in Fig. 11. In all
cases, the VSHF never accumulate significantly at any scales, to be contrasted with
VSHF growth in B4 and B8.
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(a) d4: δ = 1/4;N/f = 4.
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(b) d8: δ = 1/8;N/f = 8.
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(c) d16: δ = 1/16;N/f = 16.

Figure 11. The total, wave, vortical and kh = 0 (wave) mode spectra for d-series flow (Bu = 1).
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Numerical work by [9, 19] indicated that three-wave near-resonances are respon-
sible for the generation of VSHF in strongly and purely stratified, unit aspect-ratio
flows. Lack of VSHF in the d-series is consistent with the diminished role of three-
wave near resonances for Bu = 1 irrespective of aspect-ratio [1]. In Fig. 11 the
vortical energy has a k−3 decay rate for d4. The vortical mode energy becomes
shallower and comparable to the wave energy over a wide range of wavenumbers
as δ decreases in d8 and d16. Thus, while the relative contribution of the vortical
energy grows as δ decreases, there is no evidence, for the δ values studied, that the
vortical mode becomes dominant in the scales downscale from the forcing. At best,
the vortical mode energy becomes comparable to the wave mode energy after long
times for the smallest δ flow.
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Figure 12. For the Bu = 1 flows, left column: wave energy as a function of kh (solid) and kz (dash). Right
column: vortical energy as a function of kh (solid) and kz (dash). Top to bottom: δ = 1/4, 1/8, 1/16 (d4,
d8, d16).

As before, we consider the asymmetry of the spectra decomposed along kh and kz
in Fig. 12. As δ decreases the the decay rate in kh becomes much steeper than than
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in kz downscale of the forcing, for both wave and vortical modes. This asymmetry
in the decay rates is consistent with layer formation. Not only is the vortical energy
in kh less than the vortical energy in kz in all cases, but there is also a shallower
scaling in kz, consistent with finer scales in the vertical, in order to be consistent
with layer formation. Even though d4, which does not exhibit strong vortical layers
(Fig. 9) exhibits much less energy in the kh modes than in the kz (Fig. 12), but
both curves scale similarly downscale from the forcing. Thus asymmetry in the
decay rates of either wave or vortical energy with respect to kh and kz appears to
be a signature of layer formation in that component.
The main conclusion from the d-series comparisons is that decreasing aspect-ratio

for fixed small Fr and Bu = 1 leads to relatively weak vortical mode layering. The
vortical mode energy becomes comparable to the wave mode energy at sub-forcing
scales, but does not dominate the energy even at our smallest δ = 1/16 (to be
contrasted with B16, also at N/f = 16, in which vortical energy dominates). We
do not have data at even smaller δ to assert whether or not the vortical mode energy
becomes dominant as for the unit aspect-ratio case with small Fr and increasing
Ro.

3.5. Comparison between B-series and d-series: for fixed Fr ≃ 0.002, fix

N/f and vary δ

A final comparison may be made between the δ = 1 flow and the δ = f/N flow,
for fixed Fro = 0.002 for each value of N/f = 4, 8 and 16. That is, we can compare
pairwise: B4 with d4, B8 with d8, and B16 with d16. Note again that Ro is not
fixed in these pair-wise comparisons. We have already shown and discussed the
VSHF in terms of their presence in Bn flows and absence in the dn flows, that
discussion will not be repeated here.
The first difference for fixedN/f lies in the potential enstrophy evolution itself, as

has been noted before. For fixed 1 < N/f ≤ 32 the corresponding B-series flow has
growing potential enstrophy for B4, B8, and B16, while the d-series flows achieved
statistically steady potential enstrophy in all cases. Thus, for fixed 4 ≤ N/f ≤ 32
the potential enstrophy is allowed to grow upscale or accumulate at certain scales
in the unit aspect-ratio domain, but transfers entirely downscale and is dissipated
for small aspect-ratio.
In a side-by-side comparison of the physical structure of flows for fixed N/f = 16,

we reproduce here some visualizations from earlier in the paper in Fig. 13. (The
comparisons for N/f = 4, 8 are qualitatively the same and therefore N/f = 16 is
taken to be representative.) There is clear wave-mode layering for fixed N/f = 16
for both unit and small aspect-ratio. However, fine-scale structure is less prevalent
for d16 as compared to B16, the latter displaying horizontally more extended and
smoother layers. There appear to be much weaker layers (if any) in the vortical
component for d16 compared to B16. By ‘weaker’ we mean that the vortical layers
in d16 are less pronounced in the visualization than the layers in B16; and the
magnitude of the vortical component visualized is relatively smaller in magnitude
in d16 compared to B16. If vortical mode layering is taken to be a signature of
stratification dominated flows [5], then one might describe the small aspect-ratio
cases as being less strongly stratified than the unit aspect-ratio cases for fixed N/f .
Finally, we measure the degree to which the vortical component contributes to the

total energy in the sub-forcing scales. Consider the ratio of total vortical energy E0
>

in wavenumbers kf +5 < k < kmax to the total energy E> in the same wavenumber
range, in both small and unit-aspect-ratio runs, comparing flows with equal N/f .
In Fig. 14 we see that for fixed Bu = 1 as N/f increases from 4 to 16 (with aspect-
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Figure 13. Comparison of vizualization of u± (left) and u0 (right) for two N/f = 16 flows B16 (top) and
d16 (bottom).
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Figure 14. Ratio of total vortical energy to total energy in the subforcing k > kf + 5 scales. Left: Small
aspect-ratio runs with fixed Bu = 1 and increasing N/f . Right: Unit aspect-ratio runs with increasing
N/f .

ratio decreasing accordingly from 1/4 to 1/16), the ratio E0
>/E> grows from 20%

to 50%. Thus the vortical mode energy becomes, at best, comparable to the wave
energy at the largest value of N/f = 16. By contrast, for fixed δ = 1 as N/f
increases from 4 to 16, the ratio E0

>/E> grows from 10% to 70% (and up to nearly
90% for N/f = 32). This is a quantitative way to show that growth of the vortical
energy relative to the total energy appears suppressed in the small aspect-ratio
flow relative for the unit aspect-ratio flow as N/f increases, a point which has
been made earlier.
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4. Quantitative trends in the internal lengthscales

A standard way to quantify emergent lengthscales in flows has been the use of
correlation length (in physical space), or equivalently the centroid of the power
spectrum. There are two caveats in using such a measure in the present context.
First, since the flow is forced, the forcing scale inevitably weights such a measure.
Second, such measures are often not commensurate with our recognition, from the
flow visualizations, of the apparent multiscale nature of the layered structure.
Given these caveats we nevertheless attempt to extract trends in the parameter

space for vertical and horizontal correlation length scales, in both vortical and wave
components. The scales are defined as follows:

H0[±] = 2π
(

∑kmax

z

kz=0 kzE
0[±](kz)∆kz

E0[±]

)−1

L0[±] = 2π
(

∑kmax

h

kh=0 khE
0[±](kh)∆kh

E0[±]

)−1

δ0[±] =
H0[±]

L0[±]
(13)

where H0[±] and L0[±] are the correlation lengths in the vertical and horizontal
respectively, of the vortical[wave] component. Similar quantities were defined for
the vortical modes in [13]. In the discussion to follow, we will often distinguish be-
tween what we term absolute quantities H0 and δ0, and relative quantities H0/Hd

and δ0/δ. The relative quantities are useful when considering the emergent scales
relative to the domain scales for small aspect-ratio domains. Absolute and relative
scales are of course identical for the unit aspect-ratio cases. To avoid the prolif-
eration of related plots we present the measured vertical scales and the internal
aspect-ratios with the understanding that the latter is derived from the measured
horizontal scales as in equations 13.
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Figure 15. Wave (left) and vortical (right) vertical correlation lengths for the B-series, unit-aspect ratio
flows.

The vertical correlation lengths of the wave and vortical components of the flow,
are presented for the B-series in Fig. 15. For the wave component, after about
τ = 50, the vertical length scale increases from about 8% for N/f = 4 to 22% for
N/f = 32. For the vortical component, the trend is the opposite; for N/f = 4 the
vertical length scale is comparable to the domain height indicating weak, if any,
layered structure, and as N/f increases to 32 the relative vertical correlation length
decreases to as low as 10%. Both results in Fig 15 are consistent with our more
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qualitative results from visualizations and spectra for the B-series in the sections
above. In addition, the decrease in the vortical scale thickness is also consistent
with [13] wherein the overall vertical scale was shown to decrease as N/f increased
in a comparable series of flows.
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Figure 16. Wave (left) and vortical (right) correlation aspect-ratios for the B-series, unit-aspect ratio
flows.

Another measure of the distortion of the scales occurs relative to the domain
aspect-ratio. In Fig. 16 we show the internal aspect-ratio of the B-series flows. There
is no consistent trend in the wave-component going fromN/f = 4 toN/4 = 32. The
intermediate N/f = 8 and 16 are consistent with the growth and diminishment
of the VSHF observed in these flows as N/f is varied. The VSHF, when they
appear, can extend horizontally over the entire domain thus biasing the horizontal
correlations and consequently the aspect-ratios δ±. The aspect-ratio of the vortical
component of the B-series on the other hand shows a much clearer trend, decreasing
as N/f increases. That is, the structures go from having an aspect-ratio nearly 1
at N/f = 4 (that, is no layering in the vortical mode) to having aspect-ratio 15%
for N/f = 32.
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Figure 17. Wave (left) and vortical (right) vertical correlation lengths relative to the vertical domain size
for the d-series, with fixed Bu = 1.

In a similar analysis of the d-series flows with fixed Bu = 1, we see in Fig. 17,
the relative vertical correlation length of the wave-mode becomes larger as as N/f
is increased (domain aspect-ratio is decreased). Qualitatively, these observations
are comparable to those for the B-series between flows of the same N/f . Indeed for
both series of flows, the wave-component value of H±/Hd increases from ≈ 10%
to ≈ 17.5% as N/f increases from 4 to 16, indicating that the relative thickness of
structures in the wave-component of the flow is governed largely by N/f , irrespec-
tive of aspect-ratio.
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In the right panel of Fig. 17, the relative vertical scale of the vortical component
decreases N/f is increased (δ decreased). This is qualitatively similar to the B-
series for the same N/f , although the vortical mode scales in the d-series are still
strongly growing in time. Let us choose equal nonlinear times of about τ = 100:
H0/Hd drops from O(1) to about 30% as N/f increases from 4 to 16 in the B-series,
and from about 85% to about 25% for the same drop in N/f in the d-series. If we
choose the latest times of the respective flows instead, then the change remains the
same for the B-series (since those correlation lengths have more or less saturated
in time), but goes from about 90% to about 65% in the d-series.
The internal aspect-ratios of the d-series are shown in Fig. 18. The wave compo-

nent shows an increase in the relative aspect-ratio δ±/δ from 2 to 6 asN/f increases
from 4 to 16. A value of δ±[0]/δ > 1 indicates that the structures in a flow are not
as ‘flat’ as the domain. By this measure, the aspect-ratio of the wave-modes rela-
tive to the domain-aspect ratio in the d-series does increase relative to the domain
aspect-ratio, but the structures themselves are less flat than the domain itself. No-
tably the same measure in the vortical modes (Fig. 18)(b)) shows that δ0/δ seems
to converge to 2 irrespective of N/f (or δ) for the d-series Bu = 1 flows. Therefore
we may conclude that the relative aspect-ratio of the vortical mode might be fixed
by the Bu number alone for both the B and d-series flows. Although to confirm
this, we would need more parameter studies with small aspect-ratio Bu > 1 flows,
which we do not have.
The dependence of the internal (emergent) scales on the variation of N/f is given

in Fig. 19. We use the latest time data, and have four data-points for the B-series
and three in the d-series and therefore need to exert some caution in discerning
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trends and making extraplotions. In the left panel, H0 ∼ f/N for both the B-series
and the d-series. This is consistent with the visualizations of the B series (Fig. 6)
which clearly show decreasing thickness of the vortical layers as N/f increases. It
is also consistent with the apparent lack of change of the relative thickness of the
vortical layers in the d-series (Fig. 9) since more generally, H0 ∼ f/N ⇒ H0/Hd ∼
Bu−1.
The monotonic decrease of the vortical mode thickness with increasing N/f is

consistent with the observations of [13, 22] in unit aspect-ratio strongly stratified
flows with Ro ≪ 1. In flows which were forced only in the vortical component,
[13] observed vortical mode layer thickness scales with fL/N in rotating stratified
Boussinesq turbulence for Ro < 1. Although we also forced the wave-modes, our
results are in agreement with this aspect of [13]. For stratified flow dominated by
vortical motion with Ro > 1, [13] also observed the vortical mode layer thickness
scaling with Uh/N , where Uh is a characteristic horizontal velocity; we do not
address this latter regime. The experimental work of [22] on rotating and strati-
fied flow with turbulence, found that the aspect-ratio of internal eddies decreases
monotonically with f/N as the turbulence decayed. They measured the internal
aspect-ratio using vertical and horizontal Taylor microscales and did not separate
the vortical modes of the flow. Furthermore, the decrease in aspect-ratio observed in
[22] was not a linear function of f/N , indicating corrections from quasi-geostrophic
theory. Departures from f/N scaling of the characteristic scales have been of in-
terest recently, for example in studies of laboratory vortices [46, 47]. Given our
results for the wave-component scales below, we propose that corrections to the
quasi-geostrophic scaling may arise due to wave-mode contributions.
In the same Fig. 19, H± grows as (N/f)0.5 for the B-series and decays roughly as

∼ (N/f)−0.6 for d-series flows. However the relative wave-mode vertical scales in
the right panel of Fig. 19, indicate very rough scaling of (N/f)0.5, independent of δ.
Even given the sparsity of data, the main point is that, in contrast to the vortical
modes, the relative vertical scale of the wave mode increases monotonically with
N/f with scaling exponent of around 0.5. For ease of subsequent discussion we will
use the 0.5 scaling exponent as an approximate power, asking the reader to keep
in mind the caveats.
In Fig. 20 we see that δ0 decreases as f/N for both the B-series and the d-series.

Equivalently, δ0/δ decreases as Bu−1, identical to the scaling of H0/Hd. This is
because the horizontal lengthscale L0/Ld (not shown) is independent of N/f and
δ. In the same figure δ± for the B-series exhibits some scatter as a function of N/f ,
likely due to the anomaly introduced by the VSHF; however the overall trend is
consistent with a constant function of N/f . For the d-series also there is weak to
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no dependence of δ± on N/f , or δ±/δ ∼ δ−1. This in combination with the fact
that H± grows as ∼ (N/f)1/2, is because the relative horizontal lengthscale L±/Ld

(not shown) grows roughly as (N/f)1/2.
To our knowledge, such a dissection of the correlation lengths of the vortical and

wave modes has not been reported previously. The Bu−1 scaling with increasing
N/f observed for both the relative vertical scales and the relative aspect-ratios of
the vortical modes seems to be quite robust under change in aspect-ratio. Even the
data which do not have dominant vortical modes (B4 and B8) lie on this trend.
However the slow growth of the (relative) vertical correlation length of the wave-
modes as N/f increases can become dominant for large N/f , even when the wave-
mode energy itself is subdominant. In Fig. 19 we see that at N/f = 32, H± is larger
than H0 for the B-series, even though vortical energy dominates that flow (see for
example Fig. 4b). Thus a gross calculation of the characteristic layer thickness,
presumably a non-trivial combination of H0 and H±, could show departures from
Bu−1 behavior.

run δ0/δ δ±/δ Bu Bu0 Bu±
B4 1.2 0.41 4 4.8 1.68
B8 0.67 0.21 8 5.76 1.76
B16 0.35 0.54 16 5.92 8.8
B32 0.13 0.51 32 4.16 16.64
d4 2.1 2 1 2.1 2
d8 2.1 3.5 1 2.1 3.5
d16 2.2 6.2 1 2.2 6.2

Table 2. Relative aspect-ratios and corresponding Burger numbers for the vortical and wave modes at latest

times. For reference, the global Burger Bu is repeated here for each flow.

It is worthwhile to note that calculation of a Burger number based on the intrinsic
final scales of these flows is now possible. Define a vortical Burger number Bu0 =
δ0N/f = Bu δ0/δ and a wave Burger number Bu± = δ±N/f = Bu δ±/δ. Based on
the latest value in time of the relative aspect-ratios, these internal Burger number
values are tabulated across various flows in Table 2. While these values of Bu0[±]

are different from the global Bu we defined at the outset of this study, the two
are comparable in many cases. Bu0 varies between about 4 and about 6 for the B-
series as the Bu varies from 4 to 32. This indicates that the “effective” stratification
of the vortical mode is less than what the global parameters indicate for the B-
series. Bu± on the other hand varies from O(1) to about 16 as Bu varies from
4 to 32 in the B-series indicating much stronger stratification of the wave mode
as compared to the vortical mode. The vortical mode dominates the energy but
the stratification, as measured by scale distortion and internal Burger number is
stronger in the wave-mode.
For the d-series Bu0 is remarkably constant, (equal to 2), consistent with, though

indicative of somewhat stronger stratification than, the globally constant Bu = 1.
Bu0 = 2 also indicates less stratification than flow with comparable N/f in the B-
series. In the d-seriesBu± varies from 2 to 6.2 which indicates stronger stratification
than the global Bu ∼ O(1) would indicate, but still weaker than the B-series flow
with comparable N/f . Again, consistent with more qualitative statements above,
these analyses show that the stratification effects, measured by scale distortion as
described, is stronger in the wave mode than in the vortical mode for all flows in our
study; and for a given N/f the small aspect-ratio cases display weaker stratification
than the unit aspect-ratio cases.
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5. Summary

Our intention in this study was to attempt to disentangle the effects of N/f , Fr,
Ro, δ and Bu, the classical parameters of rotating and stratified flows. Our point of
comparison was structure formation and its quantitative representation in energy
spectra. A standard systematic parameter study, that is, varying a single parameter
at a time keeping all others fixed, was impossible because of how they are linked.
We have nevertheless performed several scans of the parameter space varying as
little in each scan as possible. The parameter that remained fixed across all flows
was the low Fr = Fro ≃ 0.002 which ensured quadratic potential enstrophy, and
reduced non-dimensional stratification to a fixed but strong background effect. This
strong stratification also makes the Reynolds number irrelevant in that the wave-
overturning and turbulent overturning is completely suppressed, further narrowing
the possible parameter space.
On this fixed ‘background’ we first set δ = 1 and varied Ro (f) from Ro = Fr

to larger values. The conclusions were that growth in Ro is responsible for de-
laying and/or suppressing the appearance of VSHF in the small scales. The wave
modes (apart from the VSHF) showed layering at all values of Ro with diminish-
ing fine-scale structure as Ro increased. The vortical modes appear to transition
from a non-layered (or weakly layered) structure at Ro ≃ 4Fr and then to strong
layers with increasing fine-scale structure as Ro is increased further. The spectra
correspondingly showed a transition in which the vortical energy dominated the
small-scales as Ro increased. The utility of using the wave-vortical decomposition
and associated energy spectra to dissect the structures in this manner was evident
particularly because the total spectra were not very different in all cases for this
part of the study.
The difficulties introduced with δ as a variable are apparent in the definition of

Bu = Ro/Fr = Nδ/f . The variation of δ would result in either Bu varying for
fixed N/f , or vice versa. We chose the latter and fixed Bu = 1 in deference to
known theory and empirical parameters for parts of the ocean. This choice along
with our δ = 1 data, allows two additional studies – decreasing δ for fixed Bu = 1
and decreasing δ for fixed N/f . The effect in both comparisons, broadly speaking,
is to suppress fine-scale structure in the vertical relative to the domain height for
the vortical mode.
The measurement of correlation lengths and internal aspect-ratios refines what

has been learned from visualizations and energy spectra. An interesting result,
robust across all runs, is the observation that the vortical-mode internal aspect-
ratio decays nearly linearly with f/N . In our simulations, the wave-mode internal
aspect-ratio is roughly constant with f/N . Of course the net characteristic scales
of a flow depend on the vortical-mode and wave-mode contributions together. It
is possible that the departures from f/N scaling of internal aspect ratios observed
in other settings (e.g. [22]) could be attributed to contributions from the wave
modes. To refine this hypothesis further, more simulations and analyses matching
the parameters and measurements of [22] would be required.
It must be noted that in many of the cases we studied, the flow is continuing

to evolve (for example the d-series vortical modes), and our comparisons are for
different non-dimensional end times. Furthermore, as previously noted, there is
significant under-resolution of the buoyancy scale in d-series flows, unavoidable by
our choice to fix Fr and our finite computational resources. Whether or not the
scalings of the vertical scales and internal aspect ratios persist under improved
resolution is a topic for future research.
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